Chapter 5
Plane Graphs and the DCEL

So far we have been talking about geometric structures such as triangulations of polygons
and arrangements of line segments without paying much attention to how to represent
these structures. This will change now. As all of these structures can be regarded as
plane graphs, we start by reviewing a bit of terminology from (planar) graph theory. We
assume that this is—at least somewhat—familiar ground for you. If you would like to
see more details and examples, please refer to any standard textbook on graph theory,
such as Bondy and Murty [2], Diestel E], or West ﬂﬂ]

A (simple undirected) graph is a pair G = (V, E) where V is a finite set of vertices
and E is the set of edges, E C (\2/) = {{u,v} | u,v € V,u # v}. For brevity, one often
writes uv rather than {u,v} to denote an edge. The two vertices defining an edge are
adjacent to each other and they are incident to the edge.

For a vertex v € V, denote by Ng(v) the neighborhood of v in G, that is, the
set of vertices from G that are adjacent to v. Similarly, for a set W C V of vertices
define Ng(W) = U,,ew Nc(W). The degree degg(v) of a vertex v € V is the size of
its neighborhood, that is, the number of edges from E incident to v. The subscript is
often omitted when it is clear to which graph it refers to. As every edge is incident to
exactly two vertices, we have the following simple but useful relationship, often called
handshaking-lemma: ) ., deg(v) = 2[E|.

A walk in a graph G is a sequence W = (vq, ..., Vi), k € IN, of vertices such that v;
and v;,; are adjacent in G, for all 1 < i < k. A path is a walk whose vertices are pairwise
distinct. A cycle is a walk whose vertices are pairwise distinct, except for vi = vi. A
graph is connected, if there is a path between any pair of vertices. If a graph is not
connected, it is disconnected. A disconnected graph can be decomposed into maximal
connected subgraphs, its (connected) components.

A tree is a connected graph that does not have any cycle. It is not hard to show that
trees on n vertices are exactly the graphs on n vertices that have n — 1 edges.

In geometry we are typically concerned with graphs that are embedded on some
surface, here R2. An embedding or drawing is just a “nice” mapping of a graph G into
the plane. More formally, each vertex v is mapped to a distinct point ¢(v) € R? (that
is, ¢ : V — R? is injective) and each edge uv is mapped to an arc—a simple Jordan

44



CG 2012 5.1. The Euler Formula

curve—dp(uv) C R? from ¢(u) to ¢(v) such that no vertex is mapped to the relative
interior of ¢ (uv).

A graph is planar if it admits a crossing-free drawing, that is, a drawing in which
no two arcs intersect except at common endpoints. For example, K, (the complete graph
on four vertices) is planar, as demonstrated by the drawing shown in Figure 5.1a

[ L ]

(a) Crossing-free drawing. (b) Straight-line drawing.

Figure 5.1: Embeddings of K, into the plane.

If a graph is planar, then by Fary-Wagner’s Theorem M, ] there also exists a straight-
line drawing, that is, a drawing in which all arcs are line segments. In order to obtain
such a drawing for K, we have to put one vertex inside the convex hull of the other
three, see Figure

Sometimes we refer to graphs not as abstract graphs but in a concrete embedding.
If this embedding is a crossing-free embedding into the plane, the embedded graph is
referred to as a plane graph. Note the distinction between “planar” and “plane” The
former refers to an abstract graph and expresses the possibility of a crossing-free drawing,
whereas the latter refers to a geometric object that is a concrete crossing-free drawing of
a graph in the plane.

A plane straight-line graph (PSLG) is a crossing-free straight-line drawing of a graph
in the plane. Both graphs in Figure (1] are plane, but only the one shown on the right
is also a plane straight-line graph.

5.1 The Euler Formula

If we remove all vertices (points) and edges (arcs) of a plane graph G from R?, then what
remains is a finite collection of open sets. These sets are referred to as the faces of G.
For instance, both plane graphs in Figure [5.1] have 4 vertices, 6 edges and 4 faces (one
of which is unbounded). In general, if |V| is the number of vertices of a connected plane
graph, |E| its number of edges and |F| the number of faces, then the Euler Formula states
that

VI —[E[ + [F| = 2.

In the example, we get 4 — 6 +4 = 2.
If you do not insist on being too formal, the proof is simple and works by induction
on the number of edges. If we fix the number of vertices, the base case occurs for |V|—1

45



Chapter 5. Plane Graphs and the DCEL CG 2012

edges where the plane graph is a tree. Then we have |F| = 1 and the formula holds.
A graph with more edges always contains a cycle and therefore at least one bounded
face. Choose one edge from a bounded face and remove it. The resulting graph is still
connected and has one edge less but also one face less since the edge removal merges
the bounded face with another one. Consequently, since the Euler Formula holds for the
smaller graph by induction, it also holds for the larger graph.

The Euler Formula can be used to prove the following important fact about planar
graphs.

Lemma 5.1 Any planar graph onn > 3 vertices has at most 3n—6 edges and at most
2n — 4 faces.

This lemma shows that the overall complexity—the sum of the number of vertices, edges,
and faces—of a planar graph is linear in n. A planar graph with a maximal number
(3n — 6) of edges is called mazimal planar.

Exercise 5.2 Prove Lemma [5.1] using the Euler formula.
Exercise 5.3 Prove that every planar graph has a verter of degree at most 5.

Exercise 5.4 Show that Ky (the complete graph on five vertices) is not planar.

5.2 The Doubly-Connected Edge List

Many algorithms in computational geometry work with plane graphs. The doubly-
connected edge list (DCEL) is a data structure to represent a plane graph in such a way
that it is easy to traverse and to manipulate. In order to avoid unnecessary complications,
let us discuss only connected graphs here that contain at least two vertices. It is not hard
to extend the data structure to cover all plane graphs. For simplicity we also assume
that we deal with a straight-line embedding and so the geometry of edges is defined by
the mapping of their endpoints already. For more general embeddings, the geometric
description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is
represented by two halfedges going in opposite direction, and these are called twins, see
Figure Along the boundary of each face, halfedges are oriented counterclockwise.

A DCEL stores a list of halfedges, a list of vertices, and a list of faces. These lists are
unordered but interconnected by various pointers. A vertex v stores a pointer halfedge(v)
to an arbitrary halfedge originating from v. Every vertex also knows its coordinates, that
is, the point point(v) it is mapped to in the represented embedding. A face f stores a
pointer halfedge(f) to an arbitrary halfedge within the face. A halfedge h stores five
pointers:

e a pointer target(h) to its target vertex,

46



CG 2012 5.2. The Doubly-Connected Edge List

e

next(h) W\* target(h)

twin(h)
face(h) h

prev(h)’//‘ ‘\.
Figure 5.2: A halfedge in a DCEL.

a pointer face(h) to the incident face,

a pointer twin(h) to its twin halfedge,

a pointer next(h) to the halfedge following h along the boundary of face(h), and

e a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V|+ |E| + |F|, which is
O(n) for a plane graph with n vertices by Lemma [5.11

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s < halfedge(f)
h<+s
do
something with h
h < next(h)
while h # s

Exercise 5.5 Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 5.6 Why s the previous halfedge prev(-) stored explicitly and the source ver-
tex of a halfedge 1s not?

5.2.1 Manipulating a DCEL

In many geometric algorithms, plane graphs appear not just as static objects but rather
they evolve over the course of the algorithm. Therefore the data structure used to
represent the graph must allow for efficient update operations to change it.

47



Chapter 5. Plane Graphs and the DCEL CG 2012

First of all, we need to be able to generate new vertices, edges, and faces, to be added
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity. Then it should be easy to add a new vertex v to the graph within some
face f. As we maintain a connected graph, we better link the new vertex to somewhere,
say, to an existing vertex u. For such a connection to be possible, we require that the
open line segment uv lies completely in f.

Of course, two halfedges are to be added connecting u and v. But where exactly?
Given that from a vertex and from a face only some arbitrary halfedge is directly accessi-
ble, it turns out convenient to use a halfedge in the interface. Let h denote the halfedge
incident to f for which target(h) = u. Our operation becomes then (see also Figure [£.3))

add-vertex-at(v, h)

Precondition: the open line segment point(v)point(u), where u := target(h),
lies completely in f := face(h).

Postcondition: a new vertex v has been inserted into f, connected by an edge

B
he g

(a) before (b) after

h

Figure 5.3: Add a new vertex connected to an ezxisting vertez u.

and it can be realized by manipulating a constant number of pointers as follows.

add-vertex-at(v, h) {
h; < a new halfedge
h, < a new halfedge
halfedge(v) <+ h,
twin(hl) — hy
tWin(hg) +— hy
target(hy) < v
target(hy) + u
face(h;) < f

face(hy) <

next(hy) < h2
next(hy) < next( )
prev(hy) <

48



CG 2012 5.2. The Doubly-Connected Edge List

prev(hy) < hy
next(h) < h;
prev(next(hy)) < hy

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 5.4l Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we use the halfedge h that is incident to f and for which target(h) = u.

.\>

4 / \\/Z>

(a) before (b) after

Figure 5.4: Split a face by an edge uv.

Our operation becomes then

split-face(h, v)

Precondition: v is incident to f := face(h) but not adjacent to u := target(h).
The open line segment point(v)point(u) lies completely in f.

Postcondition: f has been split by a new edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident
halfedges. In particular, this is not a constant time operation, but its time complexity
is proportional to the size of f.

split-face(h, v) {
f1 < a new face
fy < a new face
h; < a new halfedge
h, < a new halfedge
halfedge(f;) + hy
halfedge(f;) < hy
twin(hl) < h,
tWin(hg) +— hy
target(hy) « v

49



Chapter 5. Plane Graphs and the DCEL CG 2012

target(hy) + u
next(hy) < next(h)
prev(next(hsy)) < hy
prev(h;) + h
next(h) < h;
i<+ hy
loop
face(i) « f,
if target(i) = v break the loop
1 < next(1i)
endloop
next(h) < next(i)
prev(next(hy)) < hy
next(i) < hy
prev(hy) < 1
1<« h]_
do
face(i) « f;
1 < next(1i)
until target(i) = u
delete the face f
}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge (represented by the halfedge) h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K, (two vertices connected by an edge).

Exercise 5.7 Give pseudocode for the operation join-face(h). Also specify precondi-
tions, if needed.

Exercise 5.8 Give pseudocode for the operation split-edge(h), that splits the edge (rep-
resented by the halfedge) h into two by a new vertex w, see Figure [53.

5.2.2 Graphs with Unbounded Edges

In some cases it is convenient to consider plane graphs, in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one vertex is placed
“at infinity”. One way to think of it is in terms of stereographic projection: Imagine
R? being the x/y-plane in R?® and place a unit sphere S such that its southpole touches
the origin. We obtain a bijective continuous mapping between R? and S \ {n}, where n

50



CG 2012 5.2. The Doubly-Connected Edge List

v
P E— P — )

<\ N
VAR
: e,

v\

(a) before (b) after

Figure 5.5: Split an edge by a new vertez.

is the northpole of S, as follows: A point p € R? is mapped to the point p’ that is the
intersection of the line through p and n with S, see Figure The further away a point

(a) Three-dimensional view. (b) Cross-section view.

hoX 1}

Figure 5.6: Stereographic projection.

in R? is from the origin, the closer its image on S gets to n. But there is no way to reach
n except in the limit. Therefore, we can imagine drawing the graph on S instead of in
R? and putting the “infinite vertex” at n.

All this is just for the sake of a proper geometric interpretation. As far as a DCEL
representation of such a graph is concerned, there is no need to consider spheres or, in
fact, anything beyond what we have discussed before. The only difference to the case
with all finite edges is that there is this special infinite vertex, which does not have any
point/coordinates associated to it. But other than that, the infinite vertex is treated
in exactly the same way as the finite vertices: it has in— and outgoing halfedges along
which the unbounded faces can be traversed (Figure [5.7).

5.2.3 Remarks

It is actually not so easy to point exactly to where the DCEL data structure originates
from. Often Muller and Preparata [El] are credited, but while they use the term DCEL,

51



Chapter 5. Plane Graphs and the DCEL CG 2012

Figure 5.7: A DCEL with unbounded edges. Usually, we will not show the infi-
nite vertex and draw all edges as straight-line segments. This yields a geometric
drawing, like the one within the gray boz.

the data structure they describe is different from what we discussed above and from what
people usually consider a DCEL nowadays. Overall, there is a large number of variants
of this data structure, which appear under the names winged edge data structure ﬂ],
halfedge data structure [@], or quad-edge data structure ﬂﬂ] Kettner [Ia] provides a
comparison of all these and some additional references.

Questions

17. What are planar/plane graphs and straight-line embeddings? Give the defini-
tions and explain the difference between planar and plane.

18. How many edges can a planar graph have? What 1s the average vertex degree
wn a planar graph? Explain Euler’s formula and derive your answers from it (see
Exercise 5.2 and B.3)).

19. How can plane graphs be represented on a computer? Explain the DCEL data

structure and how to work with it.

References

[1] Bruce G. Baumgart, A polyhedron representation for computer vision. In Proc.
AFIPS Natl. Comput. Conf., vol. 44, pp. 589-596, AFIPS Press, Alrington, Va.,
1975, URL http://dx.doi.org/10.1145/1499949.1500071.

52


http://dx.doi.org/10.1145/1499949.1500071

CG 2012 5.2. The Doubly-Connected Edge List

2]

3]
[4]

[5]

[6]

[7]

8]

[9]

[10]

John Adrian Bondy and U. S. R. Murty, Graph Theory, vol. 244 of
Graduate texts wn Mathematics. Springer-Verlag, New York, 2008, URL
http://dx.doi.org/10.1007/978-1-84628-970-5.

Reinhard Diestel, Graph Theory. Springer-Verlag, Heidelberg, 4th edn., 2010.

Istvan Fary, On straight lines representation of planar graphs. Acta Sci. Math.
Szeged, 11, (1948), 229-233.

Leonidas J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivi-
sions and the computation of Voronoi diagrams. ACM Trans. Graph., 4, 2, (1985),
74-123, URL http://dx.doi.org/10.1145/282918.282923.

Lutz Kettner, Software design in computational geometry and contour-edge
based polyhedron wvisualization. Ph.D. thesis, ETH Ziirich, Ziirich, Switzerland,
1999, URL http://dx.doi.org/10.3929/ethz-a-003861002.

David E. Muller and Franco P. Preparata, Finding the intersection of
two convex polyhedra. Theoret. Comput. Sci., 7, (1978), 217-236, URL
http://dx.doi.org/10.1016/0304-3975(78)90051-8.

Klaus Wagner, Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker- Vereinigung, 46, (1936), 26-32.

Kevin Weiler, Edge-based data structures for solid modeling in a curved sur-
face environment. IEEE Comput. Graph. Appl., 5, 1, (1985), 21-40, URL
http://dx.doi.org/10.1109/MCG.1985.276271.

Douglas B. West, An Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, 2nd edn., 2001.

53


http://dx.doi.org/10.1007/978-1-84628-970-5
http://dx.doi.org/10.1145/282918.282923
http://dx.doi.org/10.3929/ethz-a-003861002
http://dx.doi.org/10.1016/0304-3975(78)90051-8
http://dx.doi.org/10.1109/MCG.1985.276271

	Plane Graphs and the DCEL
	The Euler Formula
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Remarks



